内网办公 | English | 中国科学院  
首页 | 机构概况 | 机构设置 | 科研成果 | 研究队伍 | 研究生教育 | 国际交流 | 院地合作 | 学术期刊 | 创新文化 | 图书馆
 
   
  科研成果
概况介绍
获奖
发表论文
专著
专利
在研项目
 
您的位置: 首页 >>> 研究成果
Stable isotopic constraints on global soil organic carbon turnover
论文题目: Stable isotopic constraints on global soil organic carbon turnover
第一作者: Wang Chao
刊物名称: Biogeosciences
学科: Ecology
发表年度: 2018
卷: 15
期:
页码: 987-995
摘要: Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( − β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( − β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p < 0.001) linear relationship between ln( − β) and estimates of litter and root decomposition rates suggests similar controls over rates of organic matter decay among the generalized soil C stocks. Overall, these findings demonstrate the utility of soil δ13C for independently benchmarking global models of soil C turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.
全文链接: https://www.biogeosciences.net/15/987/2018/
影响因子: 3.851

关闭窗口

返回首页


网站地图联系我们︱流量分析
@ 2002-2009 中国科学院沈阳应用生态研究所 版权所有. ALL RIGHTS RESERVED.
辽ICP备05000862号 地 址:沈阳市沈河区文化路72号 邮政编码:110016
网管信箱:webmaster@iae.ac.cn