内网办公 | English | 中国科学院  
首页 | 机构概况 | 机构设置 | 科研成果 | 研究队伍 | 研究生教育 | 国际交流 | 院地合作 | 学术期刊 | 创新文化 | 图书馆
 
   
  科研成果
概况介绍
获奖
发表论文
专著
专利
在研项目
 
您的位置: 首页 >>> 研究成果
Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation
论文题目: Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation
第一作者: Li, Hui
刊物名称: SOIL BIOLOGY & BIOCHEMISTRY
学科: SOIL SCIENCE
发表年度: 2017
卷: 104
期:
页码: 18-29
摘要: Global nitrogen (N) deposition and precipitation change are two important factors influencing the diversity and function of terrestrial ecosystems. While considerable efforts have been devoted to investigate the responses of aboveground plant communities to altered precipitation regimes and N enrichment, the variations of belowground soil microbial communities are not well understood, particularly at the functional gene structure level. Based on a 9-year field experiment established in a typical steppe in Inner Mongolia, China, we examined the impacts of projected N deposition and precipitation increment on soil microbial functional gene composition, and assessed the soil/plant factors associated with the observed impacts. The overall functional gene composition significantly shifted in response to precipitation increment, N deposition and their combinations (all ADONIS P < 0.05), and such changes were primarily correlated with soil pH, microbial biomass, and microbial respiration. Water supply increased the abundances of both carbon (C) and N cycling genes, suggesting that the projected precipitation increment could accelerate nutrient cycling in this semi-arid region. N effects were mainly observed on the genes involved in vanillin/lignin degradations, implying that the recalcitrant C would not accumulate in soil under future scenarios of higher N deposition. Structural equation modeling (SEM) analysis revealed that soil dissolved organic carbon (DOC) was a key factor directly determining the abundance of C degradation and N cycling genes, and aboveground plant biomass indirectly influenced gene abundance through enhancing DOC. The present work provides important insights on the microbial functional feedbacks to projected global change in this semi-arid grassland ecosystem, and the mechanisms governing C and N cycles at the regional scale. 
全文链接: http://www.sciencedirect.com/science/article/pii/S003807171630387X
影响因子: 4.152

关闭窗口

返回首页


网站地图联系我们︱流量分析
@ 2002-2009 中国科学院沈阳应用生态研究所 版权所有. ALL RIGHTS RESERVED.
辽ICP备05000862号 地 址:沈阳市沈河区文化路72号 邮政编码:110016
网管信箱:webmaster@iae.ac.cn